

15. Materials and methods are available as supporting materials on Science Online.

16. Single-letter abbreviations for the amino acid residues are as follows: G, Gly; I, Ile; M, Met; N, Asn; S, Ser; and Y, Tyr.

23. H. V. Xong et al., Cell 95, 839 (1999).

27. We thank members of the Broad Institute Medical and Population Genetics Program for helpful advice and review of the manuscript. We thank the study participants for their participation and Mr. Robinson for the help provided accessing the 100 Genomes project data. We thank K. C. Zhou (National Cancer Institute (NCI)) and E. Binns-Roemer (NCI), P. Poelvoorde (Université Libre de Bruxelles (ULB)), P. Tobali (ULB) and A. Pays (ULB) for excellent technical assistance. We thank the investigators in the BWIN and NIH FSGS genetic studies: W. Briggs, D. Dart, S. Korbet, M. Mokryzcki, P. Kimmel, T. Ahuja, J. Berns, E. Simon, M. Smith, H. Trachtman, M. Michel, J. R. Schelling, G. Appel, and A. Katz. The work at the University of Brussels was supported by the "CIBLES" program of the Wallon Region, the Fonds National de la Recherche Scientifique, and the Interuniversity Attraction Poles program of the Belgian Science Policy. This work was also supported by grants from the NIH (R01 DK54931 to M.R.P.; K08-DK076668 to D.J.F.; R01 DK06358 and R01 DK55391 to D.W.B.; and R01 HL56266, R01 DK 070941, and R01 DK 084149 to B.J.F.), the National Institute of Diabetes, Digestive, and Kidney Disease Intramural research program (Z01 DK043308 to B.J.K.), the Intramural Research Program of NCI, Center for Cancer Research (Project ZIA BC 010022; C.A.W. and G.W.N.), and the NephCure Foundation (to M.R.P). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. The publisher or recipient acknowledges right of the U.S. Government to retain a nonexclusive, royalty-free license in and to any copyright covering the article. This project has been funded in part with federal funds from the NCI, NIH, under contract HHSN261200800000E.1. All participants gave informed consent for genetic studies, and research was conducted under protocols approved by the appropriate institutional review boards. J.B.K., G.W.N., C.A.W., and the NCI have a patent application pending for chromosome 22 polymorphisms and haplotypes for genetic screening and clinical applications. M.R.P., G.G., the Brigham and Women’s Hospital, and Beth Israel Deaconess Medical Center have been added as co-inventors to an amendment to this application naming the specific ApoL1 SNPs described in this manuscript. E.P., L.L., P.U., and ULB have applied for a patent related to the use of plasma from ESKD patients to treat human sleeping sickness by plasma transfer.

An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger

Elaine R. Lee,*† Jenny L. Baker,*‡ Zasha Weinberg,*† Narasimhan Sudarsan,1,3 Ronald R. Breaker*1,3,4†

Group I self-splicing ribozymes commonly function as components of selfish mobile genetic elements. We identified an allosteric group I ribozyme, wherein self-splicing is regulated by a distinct ribowitch class that senses the bacterial second messenger c-di-GMP. The tandem RNA sensory system resides in the 5′ untranslated region of the messenger RNA for a putative virulence gene in the pathogenic bacterium Clostridium difficile. c-di-GMP binding by the ribowitch induces folding changes at atypical splice site junctions to modulate alternative RNA processing. Our findings indicate that some self-splicing ribozymes are not selfish elements but are harnessed by cells as metabolite sensors and genetic regulators.

References and Notes
REPORTS

Clostridium difficile in vitro transcription. (Asterisks identify nucleotides added to facilitate of spontaneous cleavage are derived from C. restorative (M3) mutations are depicted, and sites of a possible virulence gene. Disruptive (M2) and (WT) 84 Cd RNA encompassing the motif upstream (RNase) T1 (T1, cleaves after G residues); alkali Cd RNA in-line probing cleavage products. No adenosine; G, guanosine.

Selected RNase T1 digestion product bands are unbound versus the logarithm of the concentration S3). (B) Wild-type (WT) 84 Cd RNA from Closstridium difficile strain 630 (termed 84 Cd) (Fig. 1B) was 5'-32P-labeled and subjected to in-line probing (10, 11). The pattern of spontaneous RNA cleavage products generated without c-di-GMP (Fig. 1C) is consistent with our secondary structure model. Furthermore, 11 linkages exhibit reduced strand scission in 10 μM c-di-GMP, which indicates that these nucleotides are structurally stabilized on second messenger binding. Probing using a range of c-di-GMP concentrations reveals one-to-one binding with an apparent dissociation constant (K_D) of ~200 pM (Fig. 1D and fig. S3). K_D values for analogs are more than three orders of magnitude poorer (Fig. 1E), revealing molecular discrimination comparable to that exhibited by c-di-GMP-I riboswitches (7).

Riboswitch function by other c-di-GMP-II RNAs was validated in vivo using riboswitch reporter gene fusions (fig. S4, A and B) and in vitro using transcription termination assays (fig. S4, C and D). However, the 84 Cd aptamer lacks normal ribosome control structures and is located ~600 nucleotides upstream of the putative start codon for its associated open reading frame (ORF) (Fig. 2A). This unusually large gap has all the hallmarks of a group I self-splicing ribozyme (12, 13) (fig. S5); therefore, we speculated that the RNAs may collaborate to function as an allosteric ribozyme wherein splicing is controlled by c-di-GMP.

Allosteric ribozyme function was assessed by using an 864-nucleotide internally 32P-labeled RNA (864 Cd Tandem) carrying the aptamer and ribozyme domains and part of the C. difficile CD3246 ORF (Fig. 2B and fig. S5). Incubation of wild-type RNA with guanosine 5´-triphosphate (GTP) yields characteristic group I ribozyme products (Fig. 2C and fig. S6). However, the amount of 5E-3E spliced exons increases substantially when both GTP and c-di-GMP are present (Fig. 3, A and B). The dose-response curve for c-di-GMP induction of splicing fits a one-to-one interaction with half-maximal 5E-3E production occurring with 30-nM second messenger (fig. S7).

Analysis of in vitro splice products (figs. S8 and S9) reveals an atypical 5´ splice site (ss). Total RNA isolated from cultured C. difficile 630 cells produced a dominant reverse transcription polymerase chain reaction product (fig. S10) with a splice junction determined by sequencing that corresponded to that found in our in vitro assays. Furthermore, the extent of splicing increases with culture age. This latter finding is consistent with allosteric activation of splicing by c-di-GMP, whose concentrations should increase with increasing cell density.

Another RNA product (3´E*), determined to be a fragment of the 3´ exon caused by GTP attack far from the 5´ ss (fig. S8), is reduced in the presence of c-di-GMP (Figs. 2C and 3D). Production of both 5E-3E* and 3E* RNAs were monitored in subsequent assays. Aptamer mutants M1 and M2 that disrupt c-di-GMP binding no longer respond to the second messenger in splicing reactions (Fig. 2C and fig. S11). In contrast, mutant M3 that carries nucleotide changes to M2 to restore aptamer P3 stem formation recovers c-di-GMP-mediated splicing control (Fig. 2C). Thus, c-di-GMP binding to the aptamer triggers increased production of spliced exons.

We noticed two alternative base-pairing structures, the anti-5´ ss stem (Fig. 2B, blue shading) and the alternative ribozyme P1 stem (green shading), that may explain c-di-GMP splicing control. Anti-5´ ss stem formation disrupts two base pairs of the ribozyme P1 stem, which subsequently favors formation of the alternative ribozyme P1 stem. Because c-di-GMP binding stabilizes aptamer substructures (Fig. 1C), low c-di-GMP concentrations should favor anti-5´ ss stem formation and prevent GTP attack at the 5´ ss. Indeed, a 132-nucleotide construct encompassing the aptamer through nucleotide 130 of the tandem RNA yields an in-line probing pattern consistent with anti-5´ ss stem formation in the absence of second messenger (fig. S12A). Additional mutants were used to validate this c-di-GMP-mediated structural rearrangement (fig. S12, B to D).

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail: ronald.breaker@yale.edu

Fig. 1. c-di-GMP-II riboswitches. (A) Consensus sequence and secondary structure model for c-di-GMP-II riboswitch aptamers. Nucleotides in red are conserved in >97% of the representatives. Other annotations are described in fig. S2. (B) Wild-type (WT) 84 Cd RNA encompassing the motif upstream of a possible virulence gene. Disruptive (M2) and restorative (M3) mutations are depicted, and sites of spontaneous cleavage are derived from C. Asterisks identify nucleotides added to facilitate in vitro transcription. (C) Denaturing polyacrylamide gel electrophoresis (PAGE) of WT 84 Cd RNA in-line probing cleavage products. No reaction (NR); partial digestion with ribonuclease (RNase) T1 (T1, cleaves after G residues); alkali (OH, cleaves at all linkages); incubation in the absence (−) or presence (+) of 10 μM c-di-GMP. Selected RNase T1 digestion product bands are identified. (D) Plot of the fraction of RNA remaining unbound versus the logarithm of the concentration of c-di-GMP present during in-line probing (fig. S3). (E) K_D values for 84 Cd binding to c-di-GMP and various di- and mononucleotide analogs. A, adenosine; G, guanosine.

1Department of Molecular, Cellular, and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520–8103, USA. 2Department of Chemistry, Yale University, Box 208103, New Haven, CT 06520–8103, USA. 3Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520–8103, USA. 4Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520–8103, USA.

www.sciencemag.org
Fig. 2. Architecture, mechanism, and activity of a tandem riboswitch-ribozyme. (A) Tandem c-di-GMP-II aptamer and group I ribozyme arrangement. (B) Key features of the aptamer-ribozyme system, including validated splice and GTP attack sites (fig. S8). Alternative base-pair interactions guiding allosteric function are shaded blue and green. (C) PAGE separation of products generated by self-splicing assays. NR, no reaction; C-IVS and L-IVS, circular and linear intervening sequences, respectively; Pre, 864-nucleotide precursor RNA (fig. S5); 5′E-3′E, spliced exons; 3′E*, 3′ fragment generated by GTP attack at an alternative site; Fragments, additional RNA products presumably created by IVS circularization. Data for some mutants is presented elsewhere (fig. S11).

Fig. 3. Rate constant modulation by c-di-GMP. (A) Time course of [α-32P]GTP attack at sites GTP1 or GTP2 in the absence or presence of c-di-GMP. (B) Plot of the natural logarithm of the fraction of unprocessed or differently processed RNA (pre-dp RNA) versus time for the reaction in (A). Values for fraction processed were corrected for ~50% of the precursor remaining after exhaustive incubation. (C) Time course of the production of spliced exons (5′E-3′E) or alternative GTP2 site fragment (3′E*) in the absence or presence of c-di-GMP. Annotations are as described for Fig. 2C. (D) Plot of the natural logarithm of the fraction of unprocessed or differently processed RNA versus time for the reaction in (C), corrected as described in (B). (E) Changes in splice product yields on introduction of c-di-GMP. (Left) Ratio of the number of 3′E* molecules versus the number of 5′E-3′E spliced exon molecules in the absence or presence of c-di-GMP, respectively. (Right) Ratio of the numbers of 3′E* molecules and the numbers of 5′E-3′E spliced exon molecules in the absence or presence of c-di-GMP, respectively.
The role of the anti-3' ss stem was further evaluated by establishing the effects of mutants M4, M5, and M6. Consistent with our model, mutants M4 and M5 disrupt regulation (Fig. 2C and fig. S11), whereas M6 combines these disruptive mutations to yield a construct that restores c-di-GMP binding and regulation. Mutations M7 through M11 were created to assess the importance of the ribozyme P1 stem and the alternative ribozyme P1 stem for allosteric control. Mutations M7 through M10 disrupt specific structures and exhibit expected reductions in particular RNA products. Most notably, normal c-di-GMP regulation is observed for M11, which combines several disruptive mutations to form an RNA that restores alternative base-pairing potential. Finally, M12 lacks any splicing activity due to disruption of the ribozyme’s GTP binding site. These findings are consistent with an allosteric ribozyme mechanism wherein c-di-GMP regulates alternative base-pairing between distal regions of the precursor mRNA.

Reactions with unlabeled 864 Cα Tandem RNA and [α-32P]GTP (Fig. 3A) were conducted to estimate the observed rate constant (kobs) values for GTP attack (Fig. 3B). A near 13-fold increase in initial rate constant (first 15 min) was observed for GTP attack at the 5’ ss when both GTP and c-di-GMP are present (2.3 × 10^2 min^-1). In contrast, there is only a modest reduction in the initial rate constant for GTP attack at the alternative GTP2 site. This same pattern of ribozyme modulation is observed when internally labeled RNAs are used (Fig. 3C), which results in a 12-fold increase in the initial kobs for spliced product formation in the absence of c-di-GMP.

Similar results are obtained by evaluating the yields of spliced exon and alternative attack products after incubating for 120 min (Fig. 3, C and E). Without c-di-GMP, the ribozyme produces greater than 20-fold more alternative attack product than spliced exons (Fig. 3E, left). Nearly equal amounts are produced when c-di-GMP is present. This change is largely due to an ~8-fold increase in spliced exon production as the ratio of alternative attack product in the absence versus the presence of c-di-GMP drops only modestly (Fig. 3E, right). Thus, c-di-GMP enhances the production of fully spliced exons largely by favoring formation of the ribozyme P1.

The sequences and structures of the precursor mRNA and processed RNAs suggest a mechanism for translation control of the CD3246 ORF (Fig. 4). Although the UUG start codon predicted in annotated C. difficile genomes is atypical, this translation start site and initial polypeptide sequence is consistent with similar genes in related organisms. In the precursor RNA, the start codon resides in the right shoulder of the P10 stem (Fig. 4A). This arrangement should restrict ribosome access and preclude translation, which is a common mechanism for translation control by riboswitches (3). With sufficient c-di-GMP and GTP, ribozyme action yields a processed mRNA wherein the spliced junction resides in a perfect ribosome binding site (AGGAAG), which locates an optimal distance upstream of the start codon (Fig. 4B). Thus, allosteric activation of ribozyme self-splicing by c-di-GMP should favor translation. In contrast, ribozyme action in the absence of c-di-GMP favors GTP attack only four nucleotides upstream of the start codon. This product is trimmed of nucleotides that otherwise could serve as a ribosome binding site (Fig. 4C), which should disfavor translation.

Bacteria naturally exploit tandem riboswitch architectures to create more complex gene control elements (14–17). Our findings add to this complexity by demonstrating how two ligand-responsive RNAs, a self-splicing ribozyme and a riboswitch aptamer, collaborate to function as an allosteric RNA requiring two RNA compounds (GTP and c-di-GMP) to promote splicing. This conjoined riboswitch-ribozyme system validates a prediction made more than 20 years ago (18) that some group I ribozymes could be controlled by nucleotide-derived alamones. Also, this RNA is a natural mimic of an engineered ribozyme that controls splicing and gene expression in response to theophylline binding (19).

Some group I ribozymes may independently function as riboswitches that sense GTP because sufficient levels must be present for splicing to occur. If true, then the tandem riboswitch-ribozyme examined in this study may constitute a two-input control system that reads GTP and c-di-GMP concentrations to trigger splicing accordingly. Notably, GTP is the immediate biosynthetic precursor of c-di-GMP, and overproduction of this second messenger causes substantial decreases in GTP concentrations in vivo (20).

The harnessing of group I ribozymes by some organisms is suggested by the observation that bacteriophage ribozyme splicing is diminished in a bacterial host when ribosome function is inhibited (21). Moreover, the gene associations of some examples are conserved in evolutionarily distant species (13), implying useful rather than purely selfish functions. Of at least 10 group I ribozymes present in C. difficile, 9 are associated with a transspas gene (fig. S12), which facilitates mobility of selfish genetic elements. Only the allosteric ribozyme described in this work lacks a transspas gene, which suggests that this representative is not a selfish RNA but has a location and a function that benefits the host.

References and Notes
5. Z. Weinberg et al., Genome Biol. 11, R31 (2010).
22. We thank J. Davis for assistance with genetical experiments and members of the Breaker laboratory for helpful discussions. We also thank L. Sonenshein for supplying C. difficile 630 spores and for training N.S. in C. difficile techniques. This work was supported by NIH grant P01 GM022778 and by the Howard Hughes Medical Institute. Z.W. advises BioRelix. R.R.B. is a cofounder and Scientific Advisory Board member of BioRelix. Yale University has filed a provisional patent application on this ribowith tool technology.

Supporting Online Material
www.sciencemag.org/cgi/content/full/329/5993/845/DC1

Materials and Methods
Figs. S1 to S13
Tables S1 and S2
10.1126/science.1190713

Fig. 4. Proposed mechanism for allosteric ribozyme-mediated gene control. (A) Precursor mRNA with the start codon sequestered by the ribozyme P10 stem. (B) RNA processed in the presence of GTP and c-di-GMP unmasks the start codon and creates a perfect ribosome binding site. (C) RNA processed in the presence of GTP alone lacks a ribosome binding site.